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The effect of the accommodation coefficients of the energy of translational and rotational motion of molecules on the temperature 
jump in the classical Smoluchowski problem is investigated. Using the extension of the well-known kinetic BKW (Boltzmann- 
Krook-Welander) equation to the case of molecular gases, an analytical solution of this problem is obtained for diatomic and 
polyatomic gases taking the rotational degrees of freedom into account. A numerical analysis of the results obtained is carried 
out. 0 2003 Elsevier Science Ltd. All rights reserved. 

Despite considerable efforts, the theoretical description of the microscopic boundary conditions when 
gas molecules interact with a solid remains extremely incomplete even for the case of ideal surfaces 
and simple gases (without internal degrees of freedom of the molecules) [l]. The situation is even more 
complex when describing molecular gases and actual surfaces. This means that, as previously, the 
phenomenological microscopic boundary conditions, which use such integral characteristics of the surface 
as the accommodation coefficients (21, are extremely important. 

For molecular gases, in addition to the accommodation coefficients of the translational energy of 
the molecules, used in the case of a simple gas, we need to take into account the accommodation 
coefficients of the internal degrees of freedom. There is experimental evidence that the accommodation 
coefficients of the internal degrees of freedom of gas molecules may differ considerably from unity in 
important practical cases, so that it is particularly important to take them into account [3,4]. 

In this paper we consider relatively low temperatures for which the excitation of the oscillational 
degrees of freedom of the molecules can be neglected [5]. At the same time, at all temperatures, apart 
from extremely low ones, the rotational degrees of freedom can be considered at the classical level [5]. 

The effect of the accommodation coefficient of the energy was considered previously in [6] for the 
case of a simple gas. In the present paper we consider, for the first time, the effect of the accommodation 
coefficients of the energy of the translational and rotational motion of the molecules, introduced below. 
Here we use the kinetic equation for a molecular gas proposed in (7,8] with a constant collision frequency 
of the molecules. Note that the kinetic equation for a molecular gas with a collision frequency propor- 
tional to the velocity of the molecules was introduced in [9]. 

It should be noted that the case of a molecular gas is essentially more complex for this problem than 
the case of a simple gas [6]. This is due to the fact that, for a simple gas, by taking into account the law 
of conservation of energy, the calculation of the energy flux transferred by molecules incident on the 
wall can be simplified considerably. For molecular gases it is necessary to consider fluxes of both 
translational and rotational energy of the molecules. Using a single law of conservation of total energy, 
it turns out to be impossible to simplify the calculation of both these fluxes. In this case it becomes 
necessary to use the exact molecule distribution function in the region of the surface. 

We mean by Smoluchowski’s problem (see, for example, [2, 6, 91) the problem of finding the 
temperature jump in a rarefied gas in the region of the surface when the temperature gradient far from 
the surface is given. 
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1. FORMULATION OF THE PROBLEM AND ITS SOLUTION 

Suppose a constant temperature gradient K,, orthogonal to the surface, is maintained in a half-space 
x > 0 far from the interface between a gas and a solid. We will assume that the temperature gradient 
is small, so that the problem can be considered in the linear approximation. The temperature profile 
outside the Knudsen layer has the form T(x) = To + K,x. We will denote the surface temperature by 
T,. The quantity AT = To - T, is Galled the temperature jump. In the linear approximation AT = C,hK,, 
h is the mean free path of the molecules, and C, is the temperature jump coefficient. It is more convenient 
to introduce the relative temperature jump 

E,=ATIT, =C&, k, = K,IT, (1.1) 

We will take the linearized kinetic equation (see [S]) for molecular gases with a constant collision 
frequency of the molecules vo, written for the case when the volume relaxation time of the energy of 
the translational and rotational degrees of freedom are close to one another. A similar assumption is 
made for the majority of molecular gases at room temperature [lo]. Henceforth we will use the following 
dimensionless variables 

c=& +6x .*=“gx 
Here k is Boltzmann’s constant, v is the velocity of translational motion of th_e gas molecules, cr) 

is the velocity of rotational motion of the gas molec_ules, for a diatomic molecule J = J, where J is its 
moment of inertia, while for a triatomic molecule J = 1,~: + JZw: + J+I.$ where Ji are the principal 
moments of inertia of a triatomic molecule. In dimensionless variables, the kinetic equation can be 
written as follows (the asterisk on the coordinate will be omitted): 

atp c,b+q$x,C,V)=j g(c,v;c’,v’)cp(x,c’,v’)dQ 
X 

(1.2) 

Here 

g=1+2c*c;+- +v* -l-j/,)(c’*+v~* -1-K) 

dQ = 2*‘-‘~~-’ eq(-c* _ v2)v2’-3&d3c 

(g is the kernel of Eq. (1.2)), 1 = 2 f or a diatomic gas and 1 = 5/2 for an N-atomic gas (N 2 3). 
Note that linear molecules behave as diatomic molecules when the rotational degrees of freedom 

are excited [5]. Hence, we will not deal with this case separately in what follows but merely include it 
in the general case of diatomic molecules. 

We will consider the boundary condition on the wall taking into account the accommodation of the 
translational and rotational energy [2, 31 

where 

q-a c, v) = q+)(c, VI, c, > 0 (1.3) 

q+, =E:, +E;(c* -3/2)+$‘(v* -l+l) (1.4) 

and EL, E:, E: are unknown quantities. 
We will represent the boundary condition far from the wall in the form 

cp~~~e~v~=cp,~x,c,v)+u(1), x+00, c, <o (1.5) 

where 

(Pas =k;(x-c,)(c*+v* -i-3/2), 
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Henceforth we will omit the asterisk on k:. 
We will introduce the energy accommodation coefficients, defined by the translational and rotational 

degrees of freedom respectively 

(1.6) 

Here we have introduced the energy fluxes of the translational and rotational motions of the molecules 
incident on the wall (the subscript i), reflected from the wall (the subscript r), and also the fluxes from 
the wall corresponding to the thermodynamic equilibrium of the wall and the gas 

Ei’ = - 1 c2cxq(0,c,v)dR, Ei” = - j v2cxcp(0,c,v)dQ 
cx <o cx <o 

E: = 1 c~c~(P~(c,v)~S~, E,” = j v2c,cpo(c,v)dQ 
c, >o c,>o 

E: = c J-;2c,(P,(0, c, v)dQ E,” = 
I 

c 
I 
J-;zcx(p, (0. c, VW 

cp,(0,c,V)=e,+E,(C2+V2-f-~), c,>o (1.7) 

where cp,(O, c, V) is the distribution function with equilibrium values of the wall parameters and a,, is 
an unknown quantity. 

The impermeability conditions for the boundary of the half-space have the form 

Ni=Np Ni=N, 

Here 

(1.8) 

Ni =- I C,Cp(O,C,V)dR, N, = I c,Cpo(O,C,V)dR 
C,CO cx x-0 

N, = j c,cp,(O,c,v)dfi 
cx z-0 

(A$ is the flux of incident molecules, IV, is the flux of reflected molecules, and IV, is the flux of molecules 
corresponding to thermodynamic equilibrium). 

Note that the second term in the expression for the kernel g makes no contribution to the right-hand 
side of Eq. (1.2), since the integral J c$pdQ is proportional to the mass flux, which in this problem is 
equal to zero. The factor c2 + v2 - 1 - l/2 in the next term of the kernel g can be represented in the 
form of the sum of two terms, equal to the factors of E: and r$’ in expression (1.4). Consequently, the 
function cp is best sought in the form 

cP=h,(x,~L)+(C2--)h2(X,CL)+(V2-f+l)h~(X,CL), p=cx (1.9) 

We obtain the vector equation 

p$+h(x,p)=J- J;; -7 exP(-Cc’2)(E+ 2~LCL’F)KO(5’)h(X,~L’)dCL’ 

Here 

KGP)=cowq(-Gp), &2(w), W,p)), 5=Mo=p*-)/2, $‘=@.o 

I 

1 5 0 100 

K&)= 5l(f+l/2) (52+1)/(1+1/2) l/5 ( F,= I 0 0 0 5l(f+l/2) (52+1)/(1+1/2) f/5 0 0 0 I 

(1.10) 

where E is the 3 x 3 identity matrix. 
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Boundary conditions (1.3)-( 1.5) can be converted into the following 

where 
h, =col(&;,&~,&~), ~(x,~)=k,(x-Cl)col{-1,l.l) (1.12) 

We will introduce the new unknown function h&, CL) = hz(x, u) - I&, p). Then, instead of (1.10) 
we obtain the following system of equations 

e +h2(x,cl)= &(f~I,2)-, exp - 5 ( P’2NGw)~~kcL’)+ (1.13) 

+ K5W2 + 4&2,(x, cl’) - hqk P) 14’ 

~+h,(x,p)=O 
p ax 

The last equation has the obvious solution 

h,(x,~)=(E:-E~)eXp(-x/CI)(l+I~I/CI)/2 (1.14) 

We will further consider the first two equations of (1.13), using expression (1.14) in the last equation. 
We will represent this system in vector form 

exp(-p’2)( E + 2pp’F)K(~%o, CL’)&’ - 

(1.15) 

Here E is the 2 x 2 identify matrix 

Later we will solve the boundary-value problem consisting of Eq. (1.15) and boundary conditions of 
the form (1.11) but now, instead of expressions (1.12), the following will occur in these conditions 

I$ =COl{E;,E:), ~(X,~)=k,(X-~)C01(-1,1) 

We will call this Problem A. 

2. ANALYTICAL SOLUTION OF PROBLEM A 

Separation of the variables in the homogeneous equation corresponding to (l.lS), 

h (x9 P) = exti-x / W(rl, v) 

where n is a spectral parameters, leads to the following characteristic equation 

(71 - wol, CL) = ~tl[~‘“‘(11)+2CIEn”‘(~)-exp(-~2)col(0,y)] 
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Here 

dj)ttl) = j expGp2 )piWYWl, pMj.6 i = o,l 
-00 

The characteristic equation, after some reduction, simplifies to 

01 - 10W’t~ cc) = $ WI), MI) = n”‘(q1) - exp(-v2 )cW, rl 

From Eqs (2.1) and (2.2) when ?J E (0, +-) we obtain the eigenvectors [ll] 

W~l,v) = ~‘“‘~wMq) + ~-‘@I)~~~IO,Y~ 
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(2.1) 

(2.2) 

(24 

E + exp(r12 )B(NN~ - 1.0 
Here 

B(z) = K-’ (z)A(z) = &(z)E + ; Q(z) 

W=E+zJ;;-_ -!- j exp(-p2)K(p)* 
P-Z 

h,(z) = 1 -2zexp(-z2)j exp(u2)du f &zexp(-z2), f Imz > 0 
0 

RX-’ denotes the principal value of the integral when integrating X-‘, 6(x) is the Dirac delta function 
and A(z) is the dispersion matrix. 

We will seek a solution of Problem A in the form of an expansion in eigenvectors (2.3) 

or, in more detail, 

(2.4) 

The vector function A(q) = col{A1(~),Az(tl)} is the unknown in these expansions. 
Substituting expression (2.4) into the first of boundary conditions (1.11) we obtain a singular integral 

equation with a Cauchy kernel 

k,cL - E:, 

I/ II -k&-E; ‘J;;, V-P 
1 j Mtl) 

- 4 + w(~2M~.)4~) + K-‘(P) 
0 0 

= II II H 1 Y 0’ 
Cc>0 P-5) 

We substitute expansion (1.9) into the expression for Ni, (1.4) into the expression for N,, and (1.7) 
into the expression for N,. We obtain the following relations 

Ni = I c,[h,(O.~~)+(c’ -So (0, c,)]dQ - 1 c,cp(O, c, v)dQ = N, - j c,cp(O,c, v)dR 
cx z-0 
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It follows from the second condition of (1.8) that the total flux is equal to zero - this condition is 
automatically satisfied (this can be verified directly), while the first condition of (1.8) gives the equality 

E, -&; -2E; -2E, =o 

We now turn to Eqs (1.6). For these equations we obtain 

The energy flux of translational motion of the molecules incident on the wall can be represented in 
the form 

E,! = -E; + E; (2.6) 

In exactly the same way, the energy flux of the rotational motion of the molecules incident on the 
wall can be expressed in the form 

Ei” = -Et + E,” (2.7) 

TO calculate Et and Ez we use the following representations 

We put 

n$+‘)(fl) = 7 exp(-p2 )p2g%$)(tj, p)dp, g = 0,1,2; m, j = I,2 
-ca 

Then, the expression for the flux of translational energy takes the form 

Direct calculations show that 

Using these equations we obtain that 
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Now, from Eqs (1.6) using expressions (2.6) and (2.7), we obtain 

(a;‘-l)E,S+E,S-E,S=O, ~=t,o.l 

Further, we obtain (see [6-81) an analytical solution of Eq. (2.5) and, calculating it using integral I, 
we obtain the following missing equations for determining all the unknown parameters 

a2 = (1 - I-’ )(-E: + EP)PO, %a, + q1a2 = bd 

1-q +(l -I-‘)&: +(po -q&2 + POP0 = PlP& 

-2-71-14)~; +2-1(1-r-1)~: +E; +(q2 +qo -poM2 +qlai +40a0 -(PO -40)B0 = 

= -b?oh - 41) 

cLoaI - a0 + WO =-k,j.tohjo (a-&P-, =cL36404-a1) 

pia2 + peal + a0 - aPo - a’P-, = -al.L0%4 

(a;’ - l)[q3a2 + q2a, + 4, (a0 + PO) + %(I + aN4 I+ 

(2.8) 

2&:, +3&i 5 - 2&, - 3E,] = (a;l - l)k, 2(1-l-‘) +@+I2 1 
(a;1 - l)[q3a2 + q2a1 + 4, (a0 + PO 1 + 400 + a)B-i I- 

-&2E; +E; +2E$ 
2J;; 

- 2E, - 3E,] = (a;’ - l&(-l + &j&) 

In these equations 

p. =exp(-S2), q. =llpo. PI =Po(-RI -%I9 41 =qo(-4 +W 

+fq,(-R,+s,), + 

1 
The point no is found from the equation Si = 0 (a special case of the problem of Jacobi inversion 

for elliptic integrals), where 

R,, = - -!-% (~,(u)+O~(U))U%U, n = 1,2,3... 

ej(“)=-~-arctg~~~:~!~2), r(z)= fK$Yl 

aj(Z)=kc(Z)+$ S- 
( 

Z2 +(-l)jr(z) , 
1 

j=l,2, 1~2,; 

The solution of system of linear equations (2.8) leads to the following expression for the temperature 
jump 

E, = D(a,,a&, 
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where 

D= 1.13019 
l-0.44595a, -O.O4272a, +O.O0755a,a, 

0.36436a,+O. 18219a, - O.O2768a,a, 

for a diatomic gas and 

D = 1.19044 
1 - 0.43332a, - O.l7771a, + O.O7572a,a, 

0.33582a,+O.25 186a, -O.l2298a,a, 

for a polyatomic gas. 
Note that when a, = a, = 1 the last formulae give respectively: E, = 1.13019 k, for a diatomic gas 

and E, = 1.19044 k, for a polyatomic gas, which agrees exactly with known results [8]. We will use the 
definition of the mean free path [12] h = np? (m/(2k~,))“~, where q is the dynamic viscosity and p is 
the density of the gas. This expression can be rewritten in the equivalent form h = XPr(7vnl(2kTS))“?, 
where x is the thermal diffusivity and Pr is the Prandtl number. The expression for the coefficient C,, 
introduced by equality (l), can then be represented in the form C, = ( 2/3Pr)Cj”, where CT = 2.01497D(a,. 
a,) for a diatomic gas and C: = 2.11571D(a,, a,,,) for a polyatomic gas. 

Note that when one of the quantities a, or a, approaches zero the temperature jumps of the molecular 
gas remain finite. Only when a, and a, simultaneously approach zero do the expressions for the 
temperature jump diverge. This is due to the fact that, in the latter case, thermal contact between the 
gas and the solid breaks down. 

The figure shows the temperature jump coefficient of a diatomic gas (a) and a polyatomic gas (b) as 
a function of the accommodation coefficient a, for different values of a,,,. It can be seen from an analysis 
of the graphs that the difference in the behaviour of diatomic and polyatomic gases increases as the 
accommodation coefficient of the rotational energy of the molecules decreases. This is due to the fact 
that a reduction in the value of the accommodation coefficient of the rotational energy of the molecules 
manifests itself in a different way in the case of diatomic and polyatomic gases. A reduction in the value 
of a, reduces the heat exchange of a solid with two-degree-of-freedom diatomic gas and with three- 
degree-of-freedom polyatomic gas. 

The value of the temperature jump in a diatomic gas when o,,, = 0 and o, = 1 is equal to &, = 1.71854 
k,, which is 52% greater than the value of the temperature jump for complete accommodation. For a 
polyatomic gas, for the similar case, we have E, = 2.00883 k,, which is 69% greater than the value of 
the temperature jump for complete accommodation. It follows from a comparison of these quantities 

a, I.0 a, 1.0 
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that the value of the accommodation coefficient of the rotational energy of the molecules in fact has 
a more pronounced effect on the temperature jumps in a polyatomic gas than in a diatomic gas. 

The formulae derived for the temperature jump of a molecular gas can be used when analysing the 
dynamics of moderately large aerosol particles, when analysing an experiment to determine the thermal 
conductivity of molecular gases and in other problems related to heat exchange between a molecular 
gas and a solid. 

This research was partially supported financially by the Russian Foundation for Basic Research 
(99-01-00336). 
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